Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Convergent numerical approximation of the stochastic total variation flow with linear multiplicative noise: the higher dimensional case (2211.04162v1)

Published 8 Nov 2022 in math.NA and cs.NA

Abstract: We consider fully discrete finite element approximation of the stochastic total variation flow equation (STVF) with linear multiplicative noise which was previously proposed in \cite{our_paper}. Due to lack of a discrete counterpart of stronger a priori estimates in higher spatial dimensions the original convergence analysis of the numerical scheme was limited to one spatial dimension, cf. \cite{stvf_erratum}. In this paper we generalize the convergence proof to higher dimensions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.