Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Solution to a problem of Katona on counting cliques of weighted graphs (2211.04153v2)

Published 8 Nov 2022 in math.CO and cs.DM

Abstract: A subset $I$ of the vertex set $V(G)$ of a graph $G$ is called a $k$-clique independent set of $G$ if no $k$ vertices in $I$ form a $k$-clique of $G$. An independent set is a $2$-clique independent set. Let $\pi_k(G)$ denote the number of $k$-cliques of $G$. For a function $w: V(G) \rightarrow {0, 1, 2, \dots}$, let $G(w)$ be the graph obtained from $G$ by replacing each vertex $v$ by a $w(v)$-clique $Kv$ and making each vertex of $Ku$ adjacent to each vertex of $Kv$ for each edge ${u,v}$ of $G$. For an integer $m \geq 1$, consider any $w$ with $\sum_{v \in V(G)} w(v) = m$. For $U \subseteq V(G)$, we say that $w$ is uniform on $U$ if $w(v) = 0$ for each $v \in V(G) \setminus U$ and, for each $u \in U$, $w(u) = \left\lfloor m/|U| \right\rfloor$ or $w(u) = \left\lceil m/|U| \right\rceil$. Katona asked if $\pi_k(G(w))$ is smallest when $w$ is uniform on a largest $k$-clique independent set of $G$. He placed particular emphasis on the Sperner graph $B_n$, given by $V(B_n) = {X \colon X \subseteq {1, \dots, n}}$ and $E(B_n) = {{X,Y} \colon X \subsetneq Y \in V(B_n)}$. He provided an affirmative answer for $k = 2$ (and any $G$). We determine graphs for which the answer is negative for every $k \geq 3$. These include $B_n$ for $n \geq 2$. Generalizing Sperner's Theorem and a recent result of Qian, Engel and Xu, we show that $\pi_k(B_n(w))$ is smallest when $w$ is uniform on a largest independent set of $B_n$. We also show that the same holds for complete multipartite graphs and chordal graphs. We show that this is not true of every graph, using a deep result of Bohman on triangle-free graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.