Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning with Stepwise Fairness Constraints (2211.03994v1)

Published 8 Nov 2022 in cs.LG, cs.AI, and cs.CY

Abstract: AI methods are used in societally important settings, ranging from credit to employment to housing, and it is crucial to provide fairness in regard to algorithmic decision making. Moreover, many settings are dynamic, with populations responding to sequential decision policies. We introduce the study of reinforcement learning (RL) with stepwise fairness constraints, requiring group fairness at each time step. Our focus is on tabular episodic RL, and we provide learning algorithms with strong theoretical guarantees in regard to policy optimality and fairness violation. Our framework provides useful tools to study the impact of fairness constraints in sequential settings and brings up new challenges in RL.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.