Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dynamic Interpretable Change Point Detection (2211.03991v2)

Published 8 Nov 2022 in cs.LG

Abstract: Identifying change points (CPs) in a time series is crucial to guide better decision making across various fields like finance and healthcare and facilitating timely responses to potential risks or opportunities. Existing Change Point Detection (CPD) methods have a limitation in tracking changes in the joint distribution of multidimensional features. In addition, they fail to generalize effectively within the same time series as different types of CPs may require different detection methods. As the volume of multidimensional time series continues to grow, capturing various types of complex CPs such as changes in the correlation structure of the time-series features has become essential. To overcome the limitations of existing methods, we propose TiVaCPD, an approach that uses a Time-Varying Graphical Lasso (TVGL) to identify changes in correlation patterns between multidimensional features over time, and combines that with an aggregate Kernel Maximum Mean Discrepancy (MMD) test to identify changes in the underlying statistical distributions of dynamic time windows with varying length. The MMD and TVGL scores are combined using a novel ensemble method based on similarity measures leveraging the power of both statistical tests. We evaluate the performance of TiVaCPD in identifying and characterizing various types of CPs and show that our method outperforms current state-of-the-art methods in real-world CPD datasets. We further demonstrate that TiVaCPD scores characterize the type of CPs and facilitate interpretation of change dynamics, offering insights into real-life applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.