Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps (2211.03988v1)

Published 8 Nov 2022 in cs.CL and cs.IR

Abstract: IR models using a pretrained LLM significantly outperform lexical approaches like BM25. In particular, SPLADE, which encodes texts to sparse vectors, is an effective model for practical use because it shows robustness to out-of-domain datasets. However, SPLADE still struggles with exact matching of low-frequency words in training data. In addition, domain shifts in vocabulary and word frequencies deteriorate the IR performance of SPLADE. Because supervision data are scarce in the target domain, addressing the domain shifts without supervision data is necessary. This paper proposes an unsupervised domain adaptation method by filling vocabulary and word-frequency gaps. First, we expand a vocabulary and execute continual pretraining with a masked LLM on a corpus of the target domain. Then, we multiply SPLADE-encoded sparse vectors by inverse document frequency weights to consider the importance of documents with lowfrequency words. We conducted experiments using our method on datasets with a large vocabulary gap from a source domain. We show that our method outperforms the present stateof-the-art domain adaptation method. In addition, our method achieves state-of-the-art results, combined with BM25.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.