Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

From Denoising Diffusions to Denoising Markov Models (2211.03595v3)

Published 7 Nov 2022 in stat.ML and cs.LG

Abstract: Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance. They work by diffusing the data distribution into a Gaussian distribution and then learning to reverse this noising process to obtain synthetic datapoints. The denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities using score matching. Such models can also be used to perform approximate posterior simulation when one can only sample from the prior and likelihood. We propose a unifying framework generalising this approach to a wide class of spaces and leading to an original extension of score matching. We illustrate the resulting models on various applications.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com