Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Generalized Product-of-Experts for Learning Multimodal Representations in Noisy Environments (2211.03587v1)

Published 7 Nov 2022 in cs.CV, cs.AI, and cs.LG

Abstract: A real-world application or setting involves interaction between different modalities (e.g., video, speech, text). In order to process the multimodal information automatically and use it for an end application, Multimodal Representation Learning (MRL) has emerged as an active area of research in recent times. MRL involves learning reliable and robust representations of information from heterogeneous sources and fusing them. However, in practice, the data acquired from different sources are typically noisy. In some extreme cases, a noise of large magnitude can completely alter the semantics of the data leading to inconsistencies in the parallel multimodal data. In this paper, we propose a novel method for multimodal representation learning in a noisy environment via the generalized product of experts technique. In the proposed method, we train a separate network for each modality to assess the credibility of information coming from that modality, and subsequently, the contribution from each modality is dynamically varied while estimating the joint distribution. We evaluate our method on two challenging benchmarks from two diverse domains: multimodal 3D hand-pose estimation and multimodal surgical video segmentation. We attain state-of-the-art performance on both benchmarks. Our extensive quantitative and qualitative evaluations show the advantages of our method compared to previous approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.