Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

pyGSL: A Graph Structure Learning Toolkit (2211.03583v1)

Published 7 Nov 2022 in cs.LG and eess.SP

Abstract: We introduce pyGSL, a Python library that provides efficient implementations of state-of-the-art graph structure learning models along with diverse datasets to evaluate them on. The implementations are written in GPU-friendly ways, allowing one to scale to much larger network tasks. A common interface is introduced for algorithm unrolling methods, unifying implementations of recent state-of-the-art techniques and allowing new methods to be quickly developed by avoiding the need to rebuild the underlying unrolling infrastructure. Implementations of differentiable graph structure learning models are written in PyTorch, allowing us to leverage the rich software ecosystem that exists e.g., around logging, hyperparameter search, and GPU-communication. This also makes it easy to incorporate these models as components in larger gradient based learning systems where differentiable estimates of graph structure may be useful, e.g. in latent graph learning. Diverse datasets and performance metrics allow consistent comparisons across models in this fast growing field. The full code repository can be found on https://github.com/maxwass/pyGSL.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Max Wasserman (5 papers)
  2. Gonzalo Mateos (61 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.