Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Complex Reading Comprehension Through Question Decomposition (2211.03277v1)

Published 7 Nov 2022 in cs.CL

Abstract: Multi-hop reading comprehension requires not only the ability to reason over raw text but also the ability to combine multiple evidence. We propose a novel learning approach that helps LLMs better understand difficult multi-hop questions and perform "complex, compositional" reasoning. Our model first learns to decompose each multi-hop question into several sub-questions by a trainable question decomposer. Instead of answering these sub-questions, we directly concatenate them with the original question and context, and leverage a reading comprehension model to predict the answer in a sequence-to-sequence manner. By using the same LLM for these two components, our best seperate/unified t5-base variants outperform the baseline by 7.2/6.1 absolute F1 points on a hard subset of DROP dataset.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.