Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Spectral Analysis of Graph Neural Networks on Dense and Sparse Graphs (2211.03231v3)

Published 6 Nov 2022 in cs.SI, cs.LG, and eess.SP

Abstract: In this work we propose a random graph model that can produce graphs at different levels of sparsity. We analyze how sparsity affects the graph spectra, and thus the performance of graph neural networks (GNNs) in node classification on dense and sparse graphs. We compare GNNs with spectral methods known to provide consistent estimators for community detection on dense graphs, a closely related task. We show that GNNs can outperform spectral methods on sparse graphs, and illustrate these results with numerical examples on both synthetic and real graphs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.