Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

4D Range Reporting in the Pointer Machine Model in Almost-Optimal Time (2211.03161v1)

Published 6 Nov 2022 in cs.DS and cs.CG

Abstract: In the orthogonal range reporting problem we must pre-process a set $P$ of multi-dimensional points, so that for any axis-parallel query rectangle $q$ all points from $q\cap P$ can be reported efficiently. In this paper we study the query complexity of multi-dimensional orthogonal range reporting in the pointer machine model. We present a data structure that answers four-dimensional orthogonal range reporting queries in almost-optimal time $O(\log n\log\log n + k)$ and uses $O(n\log4 n)$ space, where $n$ is the number of points in $P$ and $k$ is the number of points in $q\cap P$ . This is the first data structure with nearly-linear space usage that achieves almost-optimal query time in 4d. This result can be immediately generalized to $d\ge 4$ dimensions: we show that there is a data structure supporting $d$-dimensional range reporting queries in time $O(\log{d-3} n\log\log n+k)$ for any constant $d\ge 4$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.