Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BriFiSeg: a deep learning-based method for semantic and instance segmentation of nuclei in brightfield images (2211.03072v1)

Published 6 Nov 2022 in eess.IV and cs.CV

Abstract: Generally, microscopy image analysis in biology relies on the segmentation of individual nuclei, using a dedicated stained image, to identify individual cells. However stained nuclei have drawbacks like the need for sample preparation, and specific equipment on the microscope but most importantly, and as it is in most cases, the nuclear stain is not relevant to the biological questions of interest but is solely used for the segmentation task. In this study, we used non-stained brightfield images for nuclei segmentation with the advantage that they can be acquired on any microscope from both live or fixed samples and do not necessitate specific sample preparation. Nuclei semantic segmentation from brightfield images was obtained, on four distinct cell lines with U-Net-based architectures. We tested systematically deep pre-trained encoders to identify the best performing in combination with the different neural network architectures used. Additionally, two distinct and effective strategies were employed for instance segmentation, followed by thorough instance evaluation. We obtained effective semantic and instance segmentation of nuclei in brightfield images from standard test sets as well as from very diverse biological contexts triggered upon treatment with various small molecule inhibitor. The code used in this study was made public to allow further use by the community.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.