Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Fidelity Cost-Aware Bayesian Optimization (2211.02732v1)

Published 4 Nov 2022 in stat.ML and stat.ME

Abstract: Bayesian optimization (BO) is increasingly employed in critical applications such as materials design and drug discovery. An increasingly popular strategy in BO is to forgo the sole reliance on high-fidelity data and instead use an ensemble of information sources which provide inexpensive low-fidelity data. The overall premise of this strategy is to reduce the overall sampling costs by querying inexpensive low-fidelity sources whose data are correlated with high-fidelity samples. Here, we propose a multi-fidelity cost-aware BO framework that dramatically outperforms the state-of-the-art technologies in terms of efficiency, consistency, and robustness. We demonstrate the advantages of our framework on analytic and engineering problems and argue that these benefits stem from our two main contributions: (1) we develop a novel acquisition function for multi-fidelity cost-aware BO that safeguards the convergence against the biases of low-fidelity data, and (2) we tailor a newly developed emulator for multi-fidelity BO which enables us to not only simultaneously learn from an ensemble of multi-fidelity datasets, but also identify the severely biased low-fidelity sources that should be excluded from BO.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.