Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty-aware predictive modeling for fair data-driven decisions (2211.02730v1)

Published 4 Nov 2022 in stat.ML and cs.LG

Abstract: Both industry and academia have made considerable progress in developing trustworthy and responsible ML systems. While critical concepts like fairness and explainability are often addressed, the safety of systems is typically not sufficiently taken into account. By viewing data-driven decision systems as socio-technical systems, we draw on the uncertainty in ML literature to show how fairML systems can also be safeML systems. We posit that a fair model needs to be an uncertainty-aware model, e.g. by drawing on distributional regression. For fair decisions, we argue that a safe fail option should be used for individuals with uncertain categorization. We introduce semi-structured deep distributional regression as a modeling framework which addresses multiple concerns brought against standard ML models and show its use in a real-world example of algorithmic profiling of job seekers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.