Papers
Topics
Authors
Recent
2000 character limit reached

Flows for Flows: Training Normalizing Flows Between Arbitrary Distributions with Maximum Likelihood Estimation (2211.02487v1)

Published 4 Nov 2022 in cs.LG

Abstract: Normalizing flows are constructed from a base distribution with a known density and a diffeomorphism with a tractable Jacobian. The base density of a normalizing flow can be parameterised by a different normalizing flow, thus allowing maps to be found between arbitrary distributions. We demonstrate and explore the utility of this approach and show it is particularly interesting in the case of conditional normalizing flows and for introducing optimal transport constraints on maps that are constructed using normalizing flows.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.