Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Matching with Set and Concave Delays (2211.02394v2)

Published 4 Nov 2022 in cs.DS

Abstract: We initiate the study of online problems with set delay, where the delay cost at any given time is an arbitrary function of the set of pending requests. In particular, we study the online min-cost perfect matching with set delay (MPMD-Set) problem, which generalises the online min-cost perfect matching with delay (MPMD) problem introduced by Emek et al. (STOC 2016). In MPMD, $m$ requests arrive over time in a metric space of $n$ points. When a request arrives the algorithm must choose to either match or delay the request. The goal is to create a perfect matching of all requests while minimising the sum of distances between matched requests, and the total delay costs incurred by each of the requests. In contrast to previous work we study MPMD-Set in the non-clairvoyant setting, where the algorithm does not know the future delay costs. We first show no algorithm is competitive in $n$ or $m$. We then study the natural special case of size-based delay where the delay is a non-decreasing function of the number of unmatched requests. Our main result is the first non-clairvoyant algorithms for online min-cost perfect matching with size-based delay that are competitive in terms of $m$. In fact, these are the first non-clairvoyant algorithms for any variant of MPMD. Furthermore, we prove a lower bound of $\Omega(n)$ for any deterministic algorithm and $\Omega(\log n)$ for any randomised algorithm. These lower bounds also hold for clairvoyant algorithms. Finally, we also give an $m$-competititve deterministic algorithm for uniform concave delays in the clairvoyant setting.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.