Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Wireless Deep Speech Semantic Transmission (2211.02283v1)

Published 4 Nov 2022 in cs.SD, cs.IT, eess.AS, and math.IT

Abstract: In this paper, we propose a new class of high-efficiency semantic coded transmission methods for end-to-end speech transmission over wireless channels. We name the whole system as deep speech semantic transmission (DSST). Specifically, we introduce a nonlinear transform to map the speech source to semantic latent space and feed semantic features into source-channel encoder to generate the channel-input sequence. Guided by the variational modeling idea, we build an entropy model on the latent space to estimate the importance diversity among semantic feature embeddings. Accordingly, these semantic features of different importance can be allocated with different coding rates reasonably, which maximizes the system coding gain. Furthermore, we introduce a channel signal-to-noise ratio (SNR) adaptation mechanism such that a single model can be applied over various channel states. The end-to-end optimization of our model leads to a flexible rate-distortion (RD) trade-off, supporting versatile wireless speech semantic transmission. Experimental results verify that our DSST system clearly outperforms current engineered speech transmission systems on both objective and subjective metrics. Compared with existing neural speech semantic transmission methods, our model saves up to 75% of channel bandwidth costs when achieving the same quality. An intuitive comparison of audio demos can be found at https://ximoo123.github.io/DSST.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.