Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mixline: A Hybrid Reinforcement Learning Framework for Long-horizon Bimanual Coffee Stirring Task (2211.02243v1)

Published 4 Nov 2022 in cs.RO

Abstract: Bimanual activities like coffee stirring, which require coordination of dual arms, are common in daily life and intractable to learn by robots. Adopting reinforcement learning to learn these tasks is a promising topic since it enables the robot to explore how dual arms coordinate together to accomplish the same task. However, this field has two main challenges: coordination mechanism and long-horizon task decomposition. Therefore, we propose the Mixline method to learn sub-tasks separately via the online algorithm and then compose them together based on the generated data through the offline algorithm. We constructed a learning environment based on the GPU-accelerated Isaac Gym. In our work, the bimanual robot successfully learned to grasp, hold and lift the spoon and cup, insert them together and stir the coffee. The proposed method has the potential to be extended to other long-horizon bimanual tasks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.