Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tiny-Attention Adapter: Contexts Are More Important Than the Number of Parameters (2211.01979v1)

Published 18 Oct 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Adapter-tuning is a paradigm that transfers a pretrained LLM to downstream tasks by adding and tuning a small number of new parameters. Previously proposed adapter architectures are all feed-forward neural networks. In this paper, we investigate the effectiveness of using tiny-attention -- i.e., attention with extremely small per-head dimensionality -- as adapters. Our tiny-attention adapter learns to modify the hidden states at each position directly conditioned on the hidden states at all the other positions, which is missed by the previously proposed adapters. Moreover, we view its multiple attention heads as a mixture of experts and propose to average their weights during deployment, which further reduces its inference computation cost. On the GLUE benchmark, our tiny-attention adapter outperforms the other parameter-efficient transfer learning methods as well as full fine-tuning while only updating 0.05% of the parameters. On the FewGLUE benchmark, its performance is comparable to that of GPT-3 and PET.

Citations (14)

Summary

We haven't generated a summary for this paper yet.