Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enhancing Patent Retrieval using Text and Knowledge Graph Embeddings: A Technical Note (2211.01976v1)

Published 3 Nov 2022 in cs.IR

Abstract: Patent retrieval influences several applications within engineering design research, education, and practice as well as applications that concern innovation, intellectual property, and knowledge management etc. In this article, we propose a method to retrieve patents relevant to an initial set of patents, by synthesizing state-of-the-art techniques among natural language processing and knowledge graph embedding. Our method involves a patent embedding that captures text, citation, and inventor information, which individually represent different facets of knowledge communicated through a patent document. We obtain text embeddings using Sentence-BERT applied to titles and abstracts. We obtain citation and inventor embeddings through TransE that is trained using the corresponding knowledge graphs. We identify using a classification task that the concatenation of text, citation, and inventor embeddings offers a plausible representation of a patent. While the proposed patent embedding could be used to associate a pair of patents, we observe using a recall task that multiple initial patents could be associated with a target patent using mean cosine similarity, which could then be utilized to rank all target patents and retrieve the most relevant ones. We apply the proposed patent retrieval method to a set of patents corresponding to a product family and an inventor's portfolio.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.