Papers
Topics
Authors
Recent
2000 character limit reached

Self Similarity Matrix based CNN Filter Pruning (2211.01814v1)

Published 3 Nov 2022 in cs.LG and cs.CV

Abstract: In recent years, most of the deep learning solutions are targeted to be deployed in mobile devices. This makes the need for development of lightweight models all the more imminent. Another solution is to optimize and prune regular deep learning models. In this paper, we tackle the problem of CNN model pruning with the help of Self-Similarity Matrix (SSM) computed from the 2D CNN filters. We propose two novel algorithms to rank and prune redundant filters which contribute similar activation maps to the output. One of the key features of our method is that there is no need of finetuning after training the model. Both the training and pruning process is completed simultaneously. We benchmark our method on two of the most popular CNN models - ResNet and VGG and record their performance on the CIFAR-10 dataset.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.