Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Data-driven Abstractions for Verification of Deterministic Systems (2211.01793v2)

Published 3 Nov 2022 in eess.SY, cs.LO, and cs.SY

Abstract: A common technique to verify complex logic specifications for dynamical systems is the construction of symbolic abstractions: simpler, finite-state models whose behaviour mimics the one of the systems of interest. Typically, abstractions are constructed exploiting an accurate knowledge of the underlying model: in real-life applications, this may be a costly assumption. By sampling random $\ell$-step trajectories of an unknown system, we build an abstraction based on the notion of $\ell$-completeness. We newly define the notion of probabilistic behavioural inclusion, and provide probably approximately correct (PAC) guarantees that this abstraction includes all behaviours of the concrete system, for finite and infinite time horizon, leveraging the scenario theory for non convex problems. Our method is then tested on several numerical benchmarks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube