Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Learning Hypergraphs From Signals With Dual Smoothness Prior (2211.01717v4)

Published 3 Nov 2022 in cs.LG, cs.SI, eess.SP, and stat.ML

Abstract: Hypergraph structure learning, which aims to learn the hypergraph structures from the observed signals to capture the intrinsic high-order relationships among the entities, becomes crucial when a hypergraph topology is not readily available in the datasets. There are two challenges that lie at the heart of this problem: 1) how to handle the huge search space of potential hyperedges, and 2) how to define meaningful criteria to measure the relationship between the signals observed on nodes and the hypergraph structure. In this paper, for the first challenge, we adopt the assumption that the ideal hypergraph structure can be derived from a learnable graph structure that captures the pairwise relations within signals. Further, we propose a hypergraph structure learning framework HGSL with a novel dual smoothness prior that reveals a mapping between the observed node signals and the hypergraph structure, whereby each hyperedge corresponds to a subgraph with both node signal smoothness and edge signal smoothness in the learnable graph structure. Finally, we conduct extensive experiments to evaluate HGSL on both synthetic and real world datasets. Experiments show that HGSL can efficiently infer meaningful hypergraph topologies from observed signals.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.