Emergent Mind

A Convergence Theory for Federated Average: Beyond Smoothness

(2211.01588)
Published Nov 3, 2022 in cs.LG and stat.ML

Abstract

Federated learning enables a large amount of edge computing devices to learn a model without data sharing jointly. As a leading algorithm in this setting, Federated Average FedAvg, which runs Stochastic Gradient Descent (SGD) in parallel on local devices and averages the sequences only once in a while, have been widely used due to their simplicity and low communication cost. However, despite recent research efforts, it lacks theoretical analysis under assumptions beyond smoothness. In this paper, we analyze the convergence of FedAvg. Different from the existing work, we relax the assumption of strong smoothness. More specifically, we assume the semi-smoothness and semi-Lipschitz properties for the loss function, which have an additional first-order term in assumption definitions. In addition, we also assume bound on the gradient, which is weaker than the commonly used bounded gradient assumption in the convergence analysis scheme. As a solution, this paper provides a theoretical convergence study on Federated Learning.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.