Papers
Topics
Authors
Recent
2000 character limit reached

Data-based Polymer-Unit Fingerprint (PUFp): A Newly Accessible Expression of Polymer Organic Semiconductors for Machine Learning (2211.01583v1)

Published 3 Nov 2022 in cond-mat.mtrl-sci and cs.LG

Abstract: In the process of finding high-performance organic semiconductors (OSCs), it is of paramount importance in material development to identify important functional units that play key roles in material performance and subsequently establish substructure-property relationships. Herein, we describe a polymer-unit fingerprint (PUFp) generation framework. Machine learning (ML) models can be used to determine structure-mobility relationships by using PUFp information as structural input with 678 pieces of collected OSC data. A polymer-unit library consisting of 445 units is constructed, and the key polymer units for the mobility of OSCs are identified. By investigating the combinations of polymer units with mobility performance, a scheme for designing polymer OSC materials by combining ML approaches and PUFp information is proposed to not only passively predict OSC mobility but also actively provide structural guidance for new high-mobility OSC material design. The proposed scheme demonstrates the ability to screen new materials through pre-evaluation and classification ML steps and is an alternative methodology for applying ML in new high-mobility OSC discovery.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.