Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fair Visual Recognition via Intervention with Proxy Features (2211.01253v1)

Published 2 Nov 2022 in cs.LG, cs.CV, and cs.CY

Abstract: Deep learning models often learn to make predictions that rely on sensitive social attributes like gender and race, which poses significant fairness risks, especially in societal applications, e.g., hiring, banking, and criminal justice. Existing work tackles this issue by minimizing information about social attributes in models for debiasing. However, the high correlation between target task and social attributes makes bias mitigation incompatible with target task accuracy. Recalling that model bias arises because the learning of features in regard to bias attributes (i.e., bias features) helps target task optimization, we explore the following research question: \emph{Can we leverage proxy features to replace the role of bias feature in target task optimization for debiasing?} To this end, we propose \emph{Proxy Debiasing}, to first transfer the target task's learning of bias information from bias features to artificial proxy features, and then employ causal intervention to eliminate proxy features in inference. The key idea of \emph{Proxy Debiasing} is to design controllable proxy features to on one hand replace bias features in contributing to target task during the training stage, and on the other hand easily to be removed by intervention during the inference stage. This guarantees the elimination of bias features without affecting the target information, thus addressing the fairness-accuracy paradox in previous debiasing solutions. We apply \emph{Proxy Debiasing} to several benchmark datasets, and achieve significant improvements over the state-of-the-art debiasing methods in both of accuracy and fairness.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube