Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

An Easy-to-use and Robust Approach for the Differentially Private De-Identification of Clinical Textual Documents (2211.01147v1)

Published 2 Nov 2022 in cs.CR and cs.AI

Abstract: Unstructured textual data is at the heart of healthcare systems. For obvious privacy reasons, these documents are not accessible to researchers as long as they contain personally identifiable information. One way to share this data while respecting the legislative framework (notably GDPR or HIPAA) is, within the medical structures, to de-identify it, i.e. to detect the personal information of a person through a Named Entity Recognition (NER) system and then replacing it to make it very difficult to associate the document with the person. The challenge is having reliable NER and substitution tools without compromising confidentiality and consistency in the document. Most of the conducted research focuses on English medical documents with coarse substitutions by not benefiting from advances in privacy. This paper shows how an efficient and differentially private de-identification approach can be achieved by strengthening the less robust de-identification method and by adapting state-of-the-art differentially private mechanisms for substitution purposes. The result is an approach for de-identifying clinical documents in French language, but also generalizable to other languages and whose robustness is mathematically proven.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.