Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DSPGAN: a GAN-based universal vocoder for high-fidelity TTS by time-frequency domain supervision from DSP (2211.01087v3)

Published 2 Nov 2022 in cs.SD and eess.AS

Abstract: Recent development of neural vocoders based on the generative adversarial neural network (GAN) has shown obvious advantages of generating raw waveform conditioned on mel-spectrogram with fast inference speed and lightweight networks. Whereas, it is still challenging to train a universal neural vocoder that can synthesize high-fidelity speech from various scenarios with unseen speakers, languages, and speaking styles. In this paper, we propose DSPGAN, a GAN-based universal vocoder for high-fidelity speech synthesis by applying the time-frequency domain supervision from digital signal processing (DSP). To eliminate the mismatch problem caused by the ground-truth spectrograms in the training phase and the predicted spectrograms in the inference phase, we leverage the mel-spectrogram extracted from the waveform generated by a DSP module, rather than the predicted mel-spectrogram from the Text-to-Speech (TTS) acoustic model, as the time-frequency domain supervision to the GAN-based vocoder. We also utilize sine excitation as the time-domain supervision to improve the harmonic modeling and eliminate various artifacts of the GAN-based vocoder. Experiments show that DSPGAN significantly outperforms the compared approaches and it can generate high-fidelity speech for various TTS models trained using diverse data.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube