Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Random Embeddings of Graphs: The Expected Number of Faces in Most Graphs is Logarithmic (2211.01032v3)

Published 2 Nov 2022 in math.CO and cs.DM

Abstract: A random 2-cell embedding of a connected graph $G$ in some orientable surface is obtained by choosing a random local rotation around each vertex. Under this setup, the number of faces or the genus of the corresponding 2-cell embedding becomes a random variable. Random embeddings of two particular graph classes, those of a bouquet of $n$ loops and those of $n$ parallel edges connecting two vertices, have been extensively studied and are well-understood. However, little is known about more general graphs. The results of this paper explain why Monte Carlo methods cannot work for approximating the minimum genus of graphs. In his breakthrough work [Permutation-partition pairs, JCTB 1991], Stahl developed the foundation of "random topological graph theory". Most of his results have been unsurpassed until today. In our work, we analyze the expected number of faces of random embeddings (equivalently, the average genus) of a graph $G$. It was very recently shown that for any graph $G$, the expected number of faces is at most linear. We show that the actual expected number of faces $F(G)$ is almost always much smaller. In particular, we prove: 1) $\frac{1}{2}\ln n - 2 < \mathbb{E}[F(K_n)] \le 3.65 \ln n +o(1)$. 2) For random graphs $G(n,p)$ ($p=p(n)$), we have $\mathbb{E}[F(G(n,p))] \le \ln2 n+\frac{1}{p}$. 3) For random models $B(n,\Delta)$ containing only graphs, whose maximum degree is at most $\Delta$, we obtain stronger bounds by showing that the expected number of faces is $\Theta(\log n)$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: