Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards understanding CG and GMRES through examples (2211.00953v3)

Published 2 Nov 2022 in math.NA and cs.NA

Abstract: When the CG method for solving linear algebraic systems was formulated about 70 years ago by Lanczos, Hestenes, and Stiefel, it was considered an iterative process possessing a mathematical finite termination property. CG was placed into a rich mathematical context, including links with Gauss quadrature and continued fractions. The optimality property of CG was described via a normalized weighted polynomial least squares approximation to zero. This highly nonlinear problem explains the adaptation of CG iterates to the given data. Karush and Hayes immediately considered CG in infinite dimensional Hilbert spaces and investigated its superlinear convergence. Since then, the view of CG and other Krylov subspace methods has changed. Today these methods are primarily used as computational tools, and their behavior is typically characterized using linear upper bounds or heuristics based on clustering of eigenvalues. Such simplifications limit the mathematical understanding and also negatively affect their practical application. This paper offers a different perspective. Focusing on CG and GMRES, it presents mathematically important and practically relevant phenomena that uncover their behavior through a discussion of computed examples. These examples provide an easily accessible approach that enables understanding of the methods, while pointers to more detailed analyses in the literature are given. This approach allows readers to choose the level of depth and thoroughness appropriate for their intentions. Some of the points made in this paper illustrate well known facts. Others challenge mainstream views and explain existing misunderstandings. Several points refer to recent results leading to open problems. We consider CG and GMRES crucially important for the mathematical understanding, further development, and practical applications also of other Krylov subspace methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube