Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ViT-DeiT: An Ensemble Model for Breast Cancer Histopathological Images Classification (2211.00749v1)

Published 1 Nov 2022 in eess.IV and cs.CV

Abstract: Breast cancer is the most common cancer in the world and the second most common type of cancer that causes death in women. The timely and accurate diagnosis of breast cancer using histopathological images is crucial for patient care and treatment. Pathologists can make more accurate diagnoses with the help of a novel approach based on image processing. This approach is an ensemble model of two types of pre-trained vision transformer models, namely, Vision Transformer and Data-Efficient Image Transformer. The proposed ensemble model classifies breast cancer histopathology images into eight classes, four of which are categorized as benign, whereas the others are categorized as malignant. A public dataset was used to evaluate the proposed model. The experimental results showed 98.17% accuracy, 98.18% precision, 98.08% recall, and a 98.12% F1 score.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.