Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D Point Clouds (2211.00746v1)

Published 1 Nov 2022 in cs.CV

Abstract: We propose a method for joint detection and tracking of multiple objects in 3D point clouds, a task conventionally treated as a two-step process comprising object detection followed by data association. Our method embeds both steps into a single end-to-end trainable network eliminating the dependency on external object detectors. Our model exploits temporal information employing multiple frames to detect objects and track them in a single network, thereby making it a utilitarian formulation for real-world scenarios. Computing affinity matrix by employing features similarity across consecutive point cloud scans forms an integral part of visual tracking. We propose an attention-based refinement module to refine the affinity matrix by suppressing erroneous correspondences. The module is designed to capture the global context in affinity matrix by employing self-attention within each affinity matrix and cross-attention across a pair of affinity matrices. Unlike competing approaches, our network does not require complex post-processing algorithms, and processes raw LiDAR frames to directly output tracking results. We demonstrate the effectiveness of our method on the three tracking benchmarks: JRDB, Waymo, and KITTI. Experimental evaluations indicate the ability of our model to generalize well across datasets.

Citations (8)

Summary

We haven't generated a summary for this paper yet.