Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CascadeXML: Rethinking Transformers for End-to-end Multi-resolution Training in Extreme Multi-label Classification (2211.00640v1)

Published 29 Oct 2022 in cs.LG, cs.CL, and stat.ML

Abstract: Extreme Multi-label Text Classification (XMC) involves learning a classifier that can assign an input with a subset of most relevant labels from millions of label choices. Recent approaches, such as XR-Transformer and LightXML, leverage a transformer instance to achieve state-of-the-art performance. However, in this process, these approaches need to make various trade-offs between performance and computational requirements. A major shortcoming, as compared to the Bi-LSTM based AttentionXML, is that they fail to keep separate feature representations for each resolution in a label tree. We thus propose CascadeXML, an end-to-end multi-resolution learning pipeline, which can harness the multi-layered architecture of a transformer model for attending to different label resolutions with separate feature representations. CascadeXML significantly outperforms all existing approaches with non-trivial gains obtained on benchmark datasets consisting of up to three million labels. Code for CascadeXML will be made publicly available at \url{https://github.com/xmc-aalto/cascadexml}.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.