Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Reliability-Aware Deployment of DNNs on In-Memory Analog Computing Architectures (2211.00590v1)

Published 2 Oct 2022 in cs.LG, cs.AR, and cs.ET

Abstract: Conventional in-memory computing (IMC) architectures consist of analog memristive crossbars to accelerate matrix-vector multiplication (MVM), and digital functional units to realize nonlinear vector (NLV) operations in deep neural networks (DNNs). These designs, however, require energy-hungry signal conversion units which can dissipate more than 95% of the total power of the system. In-Memory Analog Computing (IMAC) circuits, on the other hand, remove the need for signal converters by realizing both MVM and NLV operations in the analog domain leading to significant energy savings. However, they are more susceptible to reliability challenges such as interconnect parasitic and noise. Here, we introduce a practical approach to deploy large matrices in DNNs onto multiple smaller IMAC subarrays to alleviate the impacts of noise and parasitics while keeping the computation in the analog domain.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.