Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CCS Explorer: Relevance Prediction, Extractive Summarization, and Named Entity Recognition from Clinical Cohort Studies (2211.00201v2)

Published 1 Nov 2022 in cs.CL, cs.AI, cs.HC, cs.IR, and cs.LG

Abstract: Clinical Cohort Studies (CCS), such as randomized clinical trials, are a great source of documented clinical research. Ideally, a clinical expert inspects these articles for exploratory analysis ranging from drug discovery for evaluating the efficacy of existing drugs in tackling emerging diseases to the first test of newly developed drugs. However, more than 100 articles are published daily on a single prevalent disease like COVID-19 in PubMed. As a result, it can take days for a physician to find articles and extract relevant information. Can we develop a system to sift through the long list of these articles faster and document the crucial takeaways from each of these articles? In this work, we propose CCS Explorer, an end-to-end system for relevance prediction of sentences, extractive summarization, and patient, outcome, and intervention entity detection from CCS. CCS Explorer is packaged in a web-based graphical user interface where the user can provide any disease name. CCS Explorer then extracts and aggregates all relevant information from articles on PubMed based on the results of an automatically generated query produced on the back-end. For each task, CCS Explorer fine-tunes pre-trained language representation models based on transformers with additional layers. The models are evaluated using two publicly available datasets. CCS Explorer obtains a recall of 80.2%, AUC-ROC of 0.843, and an accuracy of 88.3% on sentence relevance prediction using BioBERT and achieves an average Micro F1-Score of 77.8% on Patient, Intervention, Outcome detection (PIO) using PubMedBERT. Thus, CCS Explorer can reliably extract relevant information to summarize articles, saving time by $\sim \text{660}\times$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.