Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SAGE: Saliency-Guided Mixup with Optimal Rearrangements (2211.00113v1)

Published 31 Oct 2022 in cs.LG and cs.CV

Abstract: Data augmentation is a key element for training accurate models by reducing overfitting and improving generalization. For image classification, the most popular data augmentation techniques range from simple photometric and geometrical transformations, to more complex methods that use visual saliency to craft new training examples. As augmentation methods get more complex, their ability to increase the test accuracy improves, yet, such methods become cumbersome, inefficient and lead to poor out-of-domain generalization, as we show in this paper. This motivates a new augmentation technique that allows for high accuracy gains while being simple, efficient (i.e., minimal computation overhead) and generalizable. To this end, we introduce Saliency-Guided Mixup with Optimal Rearrangements (SAGE), which creates new training examples by rearranging and mixing image pairs using visual saliency as guidance. By explicitly leveraging saliency, SAGE promotes discriminative foreground objects and produces informative new images useful for training. We demonstrate on CIFAR-10 and CIFAR-100 that SAGE achieves better or comparable performance to the state of the art while being more efficient. Additionally, evaluations in the out-of-distribution setting, and few-shot learning on mini-ImageNet, show that SAGE achieves improved generalization performance without trading off robustness.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.