Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A General Decomposition Method for a Convex Problem Related to Total Variation Minimization (2211.00101v1)

Published 31 Oct 2022 in math.NA and cs.NA

Abstract: We consider sequential and parallel decomposition methods for a dual problem of a general total variation minimization problem with applications in several image processing tasks, like image inpainting, estimation of optical flow and reconstruction of missing wavelet coefficients. The convergence of these methods to a solution of the global problem is analysed in a Hilbert space setting and a convergence rate is provided. Thereby, these convergence result hold not only for exact local minimization but also if the subproblems are just solved approximately. As a concrete example of an approximate local solution process a surrogate technique is presented and analysed. Further, the obtained convergence rate is compared with related results in the literature and shown to be in agreement with or even improve upon them. Numerical experiments are presented to support the theoretical findings and to show the performance of the proposed decomposition algorithms in image inpainting, optical flow estimation and wavelet inpainting tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube