Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Principal Component Analysis for Cryo-EM Images (2210.17501v1)

Published 31 Oct 2022 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: Principal component analysis (PCA) plays an important role in the analysis of cryo-EM images for various tasks such as classification, denoising, compression, and ab-initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-electron microscopy projection images that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For $N$ images of size $L\times L$, our method has time complexity $O(N L3 + L4)$ and space complexity $O(NL2 + L3)$. In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.