Papers
Topics
Authors
Recent
2000 character limit reached

Learning Modular Robot Locomotion from Demonstrations (2210.17491v1)

Published 31 Oct 2022 in cs.RO and cs.LG

Abstract: Modular robots can be reconfigured to create a variety of designs from a small set of components. But constructing a robot's hardware on its own is not enough -- each robot needs a controller. One could create controllers for some designs individually, but developing policies for additional designs can be time consuming. This work presents a method that uses demonstrations from one set of designs to accelerate policy learning for additional designs. We leverage a learning framework in which a graph neural network is made up of modular components, each component corresponds to a type of module (e.g., a leg, wheel, or body) and these components can be recombined to learn from multiple designs at once. In this paper we develop a combined reinforcement and imitation learning algorithm. Our method is novel because the policy is optimized to both maximize a reward for one design, and simultaneously imitate demonstrations from different designs, within one objective function. We show that when the modular policy is optimized with this combined objective, demonstrations from one set of designs influence how the policy behaves on a different design, decreasing the number of training iterations needed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.