Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Selection of the Optimal Strategy to Improve Precision and Power in Randomized Trials (2210.17453v3)

Published 31 Oct 2022 in stat.ME and stat.ML

Abstract: Benkeser et al. demonstrate how adjustment for baseline covariates in randomized trials can meaningfully improve precision for a variety of outcome types. Their findings build on a long history, starting in 1932 with R.A. Fisher and including more recent endorsements by the U.S. Food and Drug Administration and the European Medicines Agency. Here, we address an important practical consideration: how to select the adjustment approach -- which variables and in which form -- to maximize precision, while maintaining Type-I error control. Balzer et al. previously proposed Adaptive Prespecification within TMLE to flexibly and automatically select, from a prespecified set, the approach that maximizes empirical efficiency in small trials (N$<$40). To avoid overfitting with few randomized units, selection was previously limited to working generalized linear models, adjusting for a single covariate. Now, we tailor Adaptive Prespecification to trials with many randomized units. Using $V$-fold cross-validation and the estimated influence curve-squared as the loss function, we select from an expanded set of candidates, including modern machine learning methods adjusting for multiple covariates. As assessed in simulations exploring a variety of data generating processes, our approach maintains Type-I error control (under the null) and offers substantial gains in precision -- equivalent to 20-43\% reductions in sample size for the same statistical power. When applied to real data from ACTG Study 175, we also see meaningful efficiency improvements overall and within subgroups.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.