Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tree Detection and Diameter Estimation Based on Deep Learning (2210.17424v1)

Published 31 Oct 2022 in cs.CV

Abstract: Tree perception is an essential building block toward autonomous forestry operations. Current developments generally consider input data from lidar sensors to solve forest navigation, tree detection and diameter estimation problems. Whereas cameras paired with deep learning algorithms usually address species classification or forest anomaly detection. In either of these cases, data unavailability and forest diversity restrain deep learning developments for autonomous systems. So, we propose two densely annotated image datasets - 43k synthetic, 100 real - for bounding box, segmentation mask and keypoint detections to assess the potential of vision-based methods. Deep neural network models trained on our datasets achieve a precision of 90.4% for tree detection, 87.2% for tree segmentation, and centimeter accurate keypoint estimations. We measure our models' generalizability when testing it on other forest datasets, and their scalability with different dataset sizes and architectural improvements. Overall, the experimental results offer promising avenues toward autonomous tree felling operations and other applied forestry problems. The datasets and pre-trained models in this article are publicly available on \href{https://github.com/norlab-ulaval/PercepTreeV1}{GitHub} (https://github.com/norlab-ulaval/PercepTreeV1).

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.