Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Similarity-based Passive Filter Pruning for Compressing CNNs (2210.17416v1)

Published 27 Oct 2022 in cs.CV, cs.AI, cs.LG, cs.SD, and eess.AS

Abstract: Convolution neural networks (CNNs) have shown great success in various applications. However, the computational complexity and memory storage of CNNs is a bottleneck for their deployment on resource-constrained devices. Recent efforts towards reducing the computation cost and the memory overhead of CNNs involve similarity-based passive filter pruning methods. Similarity-based passive filter pruning methods compute a pairwise similarity matrix for the filters and eliminate a few similar filters to obtain a small pruned CNN. However, the computational complexity of computing the pairwise similarity matrix is high, particularly when a convolutional layer has many filters. To reduce the computational complexity in obtaining the pairwise similarity matrix, we propose to use an efficient method where the complete pairwise similarity matrix is approximated from only a few of its columns by using a Nystr\"om approximation method. The proposed efficient similarity-based passive filter pruning method is 3 times faster and gives same accuracy at the same reduction in computations for CNNs compared to that of the similarity-based pruning method that computes a complete pairwise similarity matrix. Apart from this, the proposed efficient similarity-based pruning method performs similarly or better than the existing norm-based pruning methods. The efficacy of the proposed pruning method is evaluated on CNNs such as DCASE 2021 Task 1A baseline network and a VGGish network designed for acoustic scene classification.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube