Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 148 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Emergent Linguistic Structures in Neural Networks are Fragile (2210.17406v8)

Published 31 Oct 2022 in cs.LG and cs.CL

Abstract: LLMs have been reported to have strong performance on natural language processing tasks. However, performance metrics such as accuracy do not measure the quality of the model in terms of its ability to robustly represent complex linguistic structures. In this paper, focusing on the ability of LLMs to represent syntax, we propose a framework to assess the consistency and robustness of linguistic representations. To this end, we introduce measures of robustness of neural network models that leverage recent advances in extracting linguistic constructs from LLMs via probing tasks, i.e., simple tasks used to extract meaningful information about a single facet of a LLM, such as syntax reconstruction and root identification. Empirically, we study the performance of four LLMs across six different corpora on the proposed robustness measures by analysing their performance and robustness with respect to syntax-preserving perturbations. We provide evidence that context-free representation (e.g., GloVe) are in some cases competitive with context-dependent representations from modern LLMs (e.g., BERT), yet equally brittle to syntax-preserving perturbations. Our key observation is that emergent syntactic representations in neural networks are brittle. We make the code, trained models and logs available to the community as a contribution to the debate about the capabilities of LLMs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.