Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Uncertainty quantification for random domains using periodic random variables (2210.17329v2)

Published 31 Oct 2022 in math.NA and cs.NA

Abstract: We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja, Kuo, and Sloan (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random variables enter the random field as periodic functions. We develop lattice quasi-Monte Carlo (QMC) cubature rules for computing the expected value of the solution to the Poisson problem subject to domain uncertainty. These QMC rules can be shown to exhibit higher order cubature convergence rates permitted by the periodic setting independently of the stochastic dimension of the problem. In addition, we present a complete error analysis for the problem by taking into account the approximation errors incurred by truncating the input random field to a finite number of terms and discretizing the spatial domain using finite elements. The paper concludes with numerical experiments demonstrating the theoretical error estimates.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube