Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pneg: Prompt-based Negative Response Generation for Dialogue Response Selection Task (2210.17238v1)

Published 31 Oct 2022 in cs.CL

Abstract: In retrieval-based dialogue systems, a response selection model acts as a ranker to select the most appropriate response among several candidates. However, such selection models tend to rely on context-response content similarity, which makes models vulnerable to adversarial responses that are semantically similar but not relevant to the dialogue context. Recent studies have shown that leveraging these adversarial responses as negative training samples is useful for improving the discriminating power of the selection model. Nevertheless, collecting human-written adversarial responses is expensive, and existing synthesizing methods often have limited scalability. To overcome these limitations, this paper proposes a simple but efficient method for generating adversarial negative responses leveraging a large-scale LLM. Experimental results on dialogue selection tasks show that our method outperforms other methods of synthesizing adversarial negative responses. These results suggest that our method can be an effective alternative to human annotators in generating adversarial responses. Our dataset and generation code is available at https://github.com/leenw23/generating-negatives-by-gpt3.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.