Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

IITD at the WANLP 2022 Shared Task: Multilingual Multi-Granularity Network for Propaganda Detection (2210.17190v1)

Published 31 Oct 2022 in cs.CL and cs.LG

Abstract: We present our system for the two subtasks of the shared task on propaganda detection in Arabic, part of WANLP'2022. Subtask 1 is a multi-label classification problem to find the propaganda techniques used in a given tweet. Our system for this task uses XLM-R to predict probabilities for the target tweet to use each of the techniques. In addition to finding the techniques, Subtask 2 further asks to identify the textual span for each instance of each technique that is present in the tweet; the task can be modeled as a sequence tagging problem. We use a multi-granularity network with mBERT encoder for Subtask 2. Overall, our system ranks second for both subtasks (out of 14 and 3 participants, respectively). Our empirical analysis show that it does not help to use a much larger English corpus annotated with propaganda techniques, regardless of whether used in English or after translation to Arabic.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.