Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Towards Relation-centered Pooling and Convolution for Heterogeneous Graph Learning Networks (2210.17142v1)

Published 31 Oct 2022 in cs.LG and cs.AI

Abstract: Heterogeneous graph neural network has unleashed great potential on graph representation learning and shown superior performance on downstream tasks such as node classification and clustering. Existing heterogeneous graph learning networks are primarily designed to either rely on pre-defined meta-paths or use attention mechanisms for type-specific attentive message propagation on different nodes/edges, incurring many customization efforts and computational costs. To this end, we design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions, from which the structural heterogeneity of the graph can be better encoded into the embedding space through the adaptive training process. We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets, and the results show that PC-HGN consistently outperforms all the baseline and improves the performance maximumly up by 17.8%.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube