Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

ViT-LSLA: Vision Transformer with Light Self-Limited-Attention (2210.17115v1)

Published 31 Oct 2022 in cs.CV

Abstract: Transformers have demonstrated a competitive performance across a wide range of vision tasks, while it is very expensive to compute the global self-attention. Many methods limit the range of attention within a local window to reduce computation complexity. However, their approaches cannot save the number of parameters; meanwhile, the self-attention and inner position bias (inside the softmax function) cause each query to focus on similar and close patches. Consequently, this paper presents a light self-limited-attention (LSLA) consisting of a light self-attention mechanism (LSA) to save the computation cost and the number of parameters, and a self-limited-attention mechanism (SLA) to improve the performance. Firstly, the LSA replaces the K (Key) and V (Value) of self-attention with the X(origin input). Applying it in vision Transformers which have encoder architecture and self-attention mechanism, can simplify the computation. Secondly, the SLA has a positional information module and a limited-attention module. The former contains a dynamic scale and an inner position bias to adjust the distribution of the self-attention scores and enhance the positional information. The latter uses an outer position bias after the softmax function to limit some large values of attention weights. Finally, a hierarchical Vision Transformer with Light self-Limited-attention (ViT-LSLA) is presented. The experiments show that ViT-LSLA achieves 71.6% top-1 accuracy on IP102 (2.4% absolute improvement of Swin-T); 87.2% top-1 accuracy on Mini-ImageNet (3.7% absolute improvement of Swin-T). Furthermore, it greatly reduces FLOPs (3.5GFLOPs vs. 4.5GFLOPs of Swin-T) and parameters (18.9M vs. 27.6M of Swin-T).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube