Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improved acoustic-to-articulatory inversion using representations from pretrained self-supervised learning models (2210.16871v1)

Published 30 Oct 2022 in eess.AS and cs.SD

Abstract: In this work, we investigate the effectiveness of pretrained Self-Supervised Learning (SSL) features for learning the mapping for acoustic to articulatory inversion (AAI). Signal processing-based acoustic features such as MFCCs have been predominantly used for the AAI task with deep neural networks. With SSL features working well for various other speech tasks such as speech recognition, emotion classification, etc., we experiment with its efficacy for AAI. We train on SSL features with transformer neural networks-based AAI models of 3 different model complexities and compare its performance with MFCCs in subject-specific (SS), pooled and fine-tuned (FT) configurations with data from 10 subjects, and evaluate with correlation coefficient (CC) score on the unseen sentence test set. We find that acoustic feature reconstruction objective-based SSL features such as TERA and DeCoAR work well for AAI, with SS CCs of these SSL features reaching close to the best FT CCs of MFCC. We also find the results consistent across different model sizes.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.