Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Self-Regularized Prototypical Network for Few-Shot Semantic Segmentation (2210.16829v1)

Published 30 Oct 2022 in cs.CV

Abstract: The deep CNNs in image semantic segmentation typically require a large number of densely-annotated images for training and have difficulties in generalizing to unseen object categories. Therefore, few-shot segmentation has been developed to perform segmentation with just a few annotated examples. In this work, we tackle the few-shot segmentation using a self-regularized prototypical network (SRPNet) based on prototype extraction for better utilization of the support information. The proposed SRPNet extracts class-specific prototype representations from support images and generates segmentation masks for query images by a distance metric - the fidelity. A direct yet effective prototype regularization on support set is proposed in SRPNet, in which the generated prototypes are evaluated and regularized on the support set itself. The extent to which the generated prototypes restore the support mask imposes an upper limit on performance. The performance on the query set should never exceed the upper limit no matter how complete the knowledge is generalized from support set to query set. With the specific prototype regularization, SRPNet fully exploits knowledge from the support and offers high-quality prototypes that are representative for each semantic class and meanwhile discriminative for different classes. The query performance is further improved by an iterative query inference (IQI) module that combines a set of regularized prototypes. Our proposed SRPNet achieves new state-of-art performance on 1-shot and 5-shot segmentation benchmarks.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.